Linear Sensor Indicator for High-speed, High-precision Measurement and Discrimination

- Easy recognition of judgement results using color display that can be switched between red and green. *
- Equipped with a position meter that represents measured amounts and relative positions.
- Develop a variety of measurement and discrimination applications using external event inputs.
- Series expanded to include DeviceNet models.
- Short body with depth of only 95 mm (from behind the front panel), or 97 mm for DeviceNet models.
- UL certification approval (Certification Mark License).
- CE Marking conformance by third party assessment body.
- Water-resistant enclosure conforms to NEMA 4X (equivalent to IP66).

*Visual confirmation of judgement results is not supported on models that do not have an output or models that do not support DeviceNet.

You can change the display color by setting it, but you cannot switch it based on the judgement results.

Refer to Safety Precautions for All Digital Panel Meters.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Model Number Structure

Model Number Legend

Base Units and Optional Boards can be ordered individually or as sets.

Base Units

- **K3HB-S**
 - 1. Input Sensor Code
 - SD: DC Process input
 - 5. Supply Voltage
 - 100-240 VAC: 100 to 240 VAC
 - 24 VAC/VDC: 24 VAC/VDC

Optional Board

- **Sensor Power Supply/Output Boards**
 - **K33**
 - 2. Sensor Power Supply/Output Type Code
 - None: None
 - CPA: Relay output (PASS: SPDT) + Sensor power supply
 (12 VDC +/-10%, 80 mA) (See note 1.)
 - L1A: Linear current output (0 to 20 or 4 to 20 mA DC) + Sensor power supply
 (12 VDC +/-10%, 80 mA) (See note 2.)
 - L2A: Linear voltage output (0 to 5, 1 to 5, or 0 to 10 VDC) + Sensor power supply
 (12 VDC +/-10%, 80 mA) (See note 2.)
 - A: Sensor power supply (12 VDC +/-10%, 80 mA)
 - FLK1A: Communications (RS-232C) + Sensor power supply
 (12 VDC +/-10%, 80 mA) (See note 2.)
 - FLK3A: Communications (RS-485) + Sensor power supply
 (12 VDC +/-10%, 80 mA) (See note 2.)

- **Relay/Transistor Output Boards**
 - **K34**
 - 2. Relay/Transistor Output Type Code
 - None: None
 - C1: Relay contact (H/L: SPDT each)
 - C2: Relay contact (HH/H/LL/PLST-NO each)
 - T1: Transistor (NPN open collector: HH/H/PASS/L/LL)
 - T2: Transistor (PNP open collector: HH/H/PASS/L/LL)
 - BCD: BCD output + transistor output (NPN open collector: HH/H/PASS/L/LL)
 - DRT: DeviceNet (See note 2.)

- **Event Input Boards**
 - **K35**
 - 4. Event Input Type Code
 - None: None
 - 1: 5 inputs (M3 terminal blocks), NPN open collector
 - 2: 8 inputs (10-pin MIL connector), NPN open collector
 - 3: 5 inputs (M3 terminal blocks), PNP open collector
 - 4: 8 inputs (10-pin MIL connector), PNP open collector

Accessories (Sold Separately)

- **K32-DICN:** Special Cable (for event inputs, with 8-pin connector)
- **K32-BCD:** Special BCD Output Cable

Note: The following combinations are not possible.

- Communications (FLK/A) + DeviceNet (DRT)
- Communications (FLK/A) + BCD output (BCD)
- Linear current/voltage (L/A) + DeviceNet (DRT)

Rubber Packing

- **Model:** K32-P1

Note: Rubber packing is provided with the Controller.
Specifications

Ratings

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>100 to 240 VAC (50/60 Hz), 24 VAC/VDC, DeviceNet power supply: 24 VDC</td>
</tr>
<tr>
<td>Allowable power supply voltage range</td>
<td>85% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>100 to 240 V: 18 VA max. (max. load) 24 VAC/DC: 11 VA/7 W max. (max. load)</td>
</tr>
<tr>
<td>Current consumption</td>
<td>DeviceNet power supply: 50 mA max. (24 VDC)</td>
</tr>
<tr>
<td>Input</td>
<td>DC voltage/current</td>
</tr>
<tr>
<td>A/D conversion method</td>
<td>Sequential comparison system</td>
</tr>
<tr>
<td>External power supply</td>
<td>12 VDC ±10%, 80 mA (models with external power supply only)</td>
</tr>
</tbody>
</table>

Event inputs

- **Timing input**: NPN open collector or no-voltage contact signal
 - ON residual voltage: 3 V max.
 - ON current at 0 Ω: 17 mA max.
 - Max. applied voltage: 30 VDC max.
 - OFF leakage current: 1.5 mA max.
- **Startup compensation timer input**: NPN open collector or no-voltage contact signal
 - ON residual voltage: 2 V max.
 - ON current at 0 Ω: 4 mA max.
 - Max. applied voltage: 30 VDC max.
 - OFF leakage current: 0.1 mA max.
- **Hold input**: NPN open collector or no-voltage contact signal
- **Reset input**: NPN open collector or no-voltage contact signal
- **Forced-zero input**: NPN open collector or no-voltage contact signal

Output ratings (depends on the model)

- **Relay output**: 250 VAC, 30 VDC, 5 A (resistive load)
 - Mechanical life expectancy: 5,000,000 operations
 - Electrical life expectancy: 100,000 operations
- **Transistor output**: Maximum load voltage: 24 VDC, Maximum load current: 50 mA, Leakage current: 100 μA max.
- **Linear output**: Linear output 0 to 20 mA DC, 4 to 20 mA DC
 - Load: 500 Ω max,
 - Resolution: Approx. 10,000
 - Output error: ±0.5% FS
- Linear output 0 to 5 VDC, 0 to 10 VDC
 - Load: 5 kΩ max,
 - Resolution: Approx. 10,000
 - Output error: ±0.5% FS
 - (1 V or less: ±0.15 V; no output for 0 V or less)

Display method

- Negative LCD (backlit LED) display
 - 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green))

Main functions

- Scaling function
- 2-input calculation function
- Measurement operation selection, averaging, previous average value comparison, forced-zero, zero-limit, output hysteresis, output OFF delay, output test, teaching, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset

Ambient operating temperature

- −10 to 55°C (with no icing or condensation)

Ambient operating humidity

- 25% to 85%

Storage temperature

- −25 to 65°C (with no icing or condensation)

Altitude

- 2,000 m max.

Accessories

- Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual
- DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121)

Note:

1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended.
2. PNP input types are also available.
3. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables.
Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display range</td>
<td>-19,999 to 99,999</td>
</tr>
<tr>
<td>Sampling period</td>
<td>One input: 0.5 ms; Two inputs: 1.0 ms</td>
</tr>
</tbody>
</table>
| Comparative output response times (transistor outputs) | One input: OFF to ON: 1 ms max., ON to OFF: 1.5 ms max. (The time until the comparative output is output when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%).
Two inputs: OFF to ON: 2 ms max., ON to OFF: 2.5 ms max. (The time until the comparative output is output when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%). |
| Linear output response time | One input: 51 ms max. (The time until the final analog output is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%).
Two inputs: 52 ms max. (The time until the final analog output is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%). |
| Insulation resistance | 20 MΩ min. (at 500 VDC) |
| Dielectric strength | 2,300 VAC for 1 min between external terminals and case |
| Noise immunity | 100 to 240 VAC models:
-1,500 V at power supply terminals in normal or common mode (waveform with 1-μs rising edge and pulse width of 1 μs/100 ns)
24 VAC/VDC models:
-1,500 V at power supply terminals in normal or common mode (waveform with 1-μs rising edge and pulse width of 1 μs/100 ns) |
| Vibration resistance | Frequency: 10 to 55 Hz; Acceleration: 50 m/s², 10 sweeps of 5 min each in X, Y, and Z directions |
| Shock resistance | 150 m/s² (100 m/s² for relay outputs) 3 times each in 3 axes, 6 directions |
| Weight | Approx. 300 g (Base Unit only) |
| Degree of protection | Front panel: Conforms to NEMA 4X for indoor use (equivalent to IP66)
Rear case: IP20 |
| Memory protection | EEPROM (non-volatile memory)
Number of rewrites: 100,000 |
| Applicable standards | UL61010-1, CSA C22.2 No. 61010-1-04
EN61010-1: Pollution degree 2/Overvoltage category II
EN61326-1 |
| EMC | EMI: EN61326 industrial applications
Electromagnetic radiation interference
CISPR 11 Group 1, Class A
Terminal interference voltage
CISPR 11 Group 1, Class A
EMS: EN61326 industrial applications
Electrostatic Discharge Immunity
EN61000-4-2: 4 kV (contact), 8 kV (in air)
Radiated Electromagnetic Field Immunity
EN61000-4-3: 10 V/m 1 kHz sine wave amplitude modulation (80 MHz to 1 GHz, 1.4 to 2 GHz)
Electrical Fast Transient/Burst Immunity
EN61000-4-4: 2 kV (power line), 1 kV (I/O signal line)
Surge Immunity
EN61000-4-5: 1 kV with line (power line), 2 kV with ground (power line)
Conducted Disturbance Immunity
EN61000-4-6: 3 V (0.15 to 80 MHz)
Power Frequency Magnetic Immunity
EN61000-4-8: 30 A/m (50 Hz) continuous time
Voltage Dips and Interruptions Immunity
EN61000-4-11: 0.5 cycle, 0/180°, 100% (rated voltage) |

Input Ranges (Measurement Ranges and Accuracy)

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Measurement range</th>
<th>Indication range</th>
<th>Input impedance</th>
<th>Accuracy (at 23±5°C)</th>
<th>Maximum absolute rated input</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC voltage/current input</td>
<td>0 to 20 mA</td>
<td>0.000 to 20.000 mA</td>
<td>-2.000 to 22.000 mA</td>
<td>120 Ω max.</td>
<td>±31 mA</td>
</tr>
<tr>
<td>4 to 20 mA</td>
<td>4.000 to 20.000 mA</td>
<td>2.000 to 22.000 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 5 V</td>
<td>0.000 to 5.000 V</td>
<td>-0.500 to 5.500 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 to 5 V</td>
<td>1.000 to 5.000 V</td>
<td>0.500 to 5.500 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±5 V</td>
<td>±5.000 V</td>
<td>±5.500 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±10 V</td>
<td>±10.000 V</td>
<td>±11.000 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The accuracy is for an ambient temperature of 23±5°C.
The range shown in dark shading indicates the factory setting.

Sampling and Comparative Output Response Times

The K3HB-S sampling and comparative output response times depend on the calculation methods, timing hold type, and, for simple averaging, the averaging times. Refer to the following description for details.

Output Refresh Period

The K3HB-S repeats input reads, calculation, and judgement output processing. The output refresh period differs depending on whether there are one or two inputs, as outlined below.

One Input

- **Input A** or **Input B**
 - Input read: Every 0.5 ms
 - Output refresh: Every 0.5 ms

Two inputs

- **Input A** or **Input B**
 - Input read: Every 1 ms
 - Output refresh: Every 0.5 ms

Output Response Time

The comparative output response time is the sum of the data processing time and the output (relay or transistor) response time.

One Input

- **Input A** or **Input B**
 - Data processing time: 0.5 ms
 - Output response time: 0.5 ms

Two Inputs

- **Input A** or **Input B**
 - Data processing time: 0.5 ms
 - Output response time: 0.5 ms

Note: For transistor outputs:
- For one input: OFF to ON 1 ms and ON to OFF 1.5 ms
- For two inputs: OFF to ON 2 ms and ON to OFF 2.5 ms

For relay outputs:
- The relay operation time of 15 ms is added to the transistor output response times.
Common Specifications

■ Event Input Ratings

<table>
<thead>
<tr>
<th>Input type</th>
<th>S-TMR, HOLD, RESET, ZERO, BANK1, BANK2, BANK4</th>
<th>TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>ON: 1 kΩ max., OFF: 100 kΩ min.</td>
<td>---</td>
</tr>
<tr>
<td>No-contact</td>
<td>ON residual voltage: 2 V max.</td>
<td>OFF residual voltage: 3 V max.</td>
</tr>
<tr>
<td></td>
<td>OFF leakage current: 0.1 mA max.</td>
<td>OFF leakage current: 1.5 mA max.</td>
</tr>
<tr>
<td></td>
<td>Load current: 4 mA max.</td>
<td>Load current: 17 mA max.</td>
</tr>
<tr>
<td></td>
<td>Maximum applied voltage: 30 VDC max.</td>
<td>Maximum applied voltage: 30 VDC max.</td>
</tr>
</tbody>
</table>

■ Output Ratings

Contact Output

<table>
<thead>
<tr>
<th>Item</th>
<th>Resistive loads (250 VAC, cosφ=1; 30 VDC, L/R=0 ms)</th>
<th>Inductive loads (250 VAC, closed circuit, cosφ=0.4; 30 VDC, L/R=7 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated load</td>
<td>5 A at 250 VAC</td>
<td>1 A at 250 VAC</td>
</tr>
<tr>
<td></td>
<td>5 A at 30 VDC</td>
<td>1 A at 30 VDC</td>
</tr>
<tr>
<td>Mechanical life expectancy</td>
<td>5,000,000 operations</td>
<td></td>
</tr>
<tr>
<td>Electrical life expectancy</td>
<td>100,000 operations</td>
<td></td>
</tr>
</tbody>
</table>

Transistor Output

<table>
<thead>
<tr>
<th>Maximum load voltage</th>
<th>24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Leakage current</td>
<td>100 µA max.</td>
</tr>
</tbody>
</table>

■ Linear Output

<table>
<thead>
<tr>
<th>Item</th>
<th>0 to 20 mA</th>
<th>4 to 20 mA</th>
<th>0 to 5 V</th>
<th>1 to 5 V</th>
<th>0 to 10 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable load impedance</td>
<td>500 Ω max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>Approx. 10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output error</td>
<td>±0.5%FS</td>
<td>±0.5%FS</td>
<td>±0.5%FS</td>
<td>±0.5%FS</td>
<td>±0.5%FS</td>
</tr>
</tbody>
</table>

■ Serial Communications Output

<table>
<thead>
<tr>
<th>Item</th>
<th>RS-232C, RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications method</td>
<td>Half duplex</td>
</tr>
<tr>
<td>Synchronization method</td>
<td>Start-stop synchronization</td>
</tr>
<tr>
<td>Baud rate</td>
<td>9,600, 19,200, or 38,400 bps</td>
</tr>
<tr>
<td>Transmission code</td>
<td>ASCII</td>
</tr>
<tr>
<td>Data length</td>
<td>7 bits or 8 bits</td>
</tr>
<tr>
<td>Stop bit length</td>
<td>2 bits or 1 bit</td>
</tr>
<tr>
<td>Error detection</td>
<td>Vertical parity and FCS</td>
</tr>
<tr>
<td>Parity check</td>
<td>Odd, even</td>
</tr>
</tbody>
</table>

Note: For details on serial and DeviceNet communications, refer to the Digital Indicator K3HB Communications User’s Manual (Cat.No. N129).

■ BCD Output I/O Ratings

(Input Signal Logic: Negative)

<table>
<thead>
<tr>
<th>I/O signal name</th>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>REQUEST HOLD MAX MIN RESET</td>
<td>Input signal</td>
</tr>
<tr>
<td></td>
<td>Input current for no-voltage input</td>
<td>10 mA</td>
</tr>
<tr>
<td></td>
<td>Signal level</td>
<td>ON voltage</td>
</tr>
<tr>
<td></td>
<td>OFF voltage</td>
<td>3 V min.</td>
</tr>
<tr>
<td>Outputs</td>
<td>DATA POLARITY OVER DATA VALID RUN</td>
<td>Maximum load voltage</td>
</tr>
<tr>
<td></td>
<td>Maximum load current</td>
<td>10 mA</td>
</tr>
<tr>
<td></td>
<td>Leakage current</td>
<td>100 µA max.</td>
</tr>
<tr>
<td></td>
<td>HH</td>
<td>Maximum load voltage</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Maximum load current</td>
</tr>
<tr>
<td></td>
<td>PASS</td>
<td>Leakage current</td>
</tr>
<tr>
<td></td>
<td>LL</td>
<td></td>
</tr>
</tbody>
</table>

Note: For details on serial and DeviceNet communications, refer to the Digital Indicator K3HB Communications User’s Manual (Cat.No. N129).
DeviceNet Communications

- **Communications protocol**: Conforms to DeviceNet
- **Supported communications**: Master-Slave connection (polling, bit-strobe, COS, cyclic)
- **Remote I/O communications**: Conforms to DeviceNet communications standards.
- **I/O allocations**: Allocate any I/O data using the Configurator. Allocate any data, such as DeviceNet-specific parameters and variable area for Digital Indicators. Input area: 2 blocks, 60 words max. Output area: 1 block, 29 words max. (The first word in the area is always allocated for the Output Execution Enabled Flags.)
- **Message communications**: Explicit message communications. CompoWay/F communications commands can be executed (using explicit message communications)
- **Connection methods**: Combination of multi-drop and T-branch connections (for trunk and drop lines)
- **Baud rate**: DeviceNet: 500, 250, or 125 Kbps (automatic follow-up)
- **Communications media**: Special 5-wire cable (2 signal lines, 2 power supply lines, 1 shield line)
- **Communications distance**:

<table>
<thead>
<tr>
<th>Baud rate</th>
<th>Network length (max.)</th>
<th>Drop line length (max.)</th>
<th>Total drop line length (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Kbps</td>
<td>100 m (100 m)</td>
<td>6 m</td>
<td>39 m</td>
</tr>
<tr>
<td>250 Kbps</td>
<td>100 m (250 m)</td>
<td>6 m</td>
<td>78 m</td>
</tr>
<tr>
<td>125 Kbps</td>
<td>100 m (500 m)</td>
<td>6 m</td>
<td>156 m</td>
</tr>
</tbody>
</table>

The values in parentheses are for Thick Cable.

- **Communications power supply**: 24-VDC DeviceNet power supply
- **Allowable voltage fluctuation range**: 11 to 25-VDC DeviceNet power supply
- **Current consumption**: 50 mA max. (24 VDC)
- **Maximum number of nodes**: 64 (DeviceNet Configurator is counted as one node when connected)
- **Maximum number of slaves**: 63
- **Error control checks**: CRC errors
- **DeviceNet power supply**: Supplied from DeviceNet communications connector

Internal Block Diagram

![Internal Block Diagram](image-url)
Power Supply Derating Curve for Sensor (Reference Value)

With 12 V

![Graph for 12 V Power Supply Derating Curve]

With 10 V

![Graph for 10 V Power Supply Derating Curve]

Note:
1. The above values are for standard mounting. The derating curve differs depending on the mounting conditions.
2. Do not use the Sensor outside of the derating area (i.e., do not use it in the area labeled 1 in the above graphics). Doing so may occasionally cause deterioration or damage to internal components.

Component Names and Functions

- **Max/Min status indicator**
 - Turns ON when the maximum value or minimum value is displayed in the RUN level.

- **Level/bank display**
 - In RUN level, displays the bank if the bank function is ON. (Turns OFF if the bank function is OFF.)
 - In other levels, displays the current level.

- **Comparative output status indicators**
 - Display the status of comparative outputs.

- **Status indicators**
 - **Display**
 - **T-ZR**
 - Turns ON when the tare zero function is executed. Turns OFF if it is not executed or cleared.
 - **Zero**
 - Turns ON when the forced-zero function is executed. Turns OFF if it is not executed or cleared (including the time it is)
 - **Hold**
 - Turns ON/OFF when hold input turns ON/OFF.

- **PV display**
 - Displays PVs, maximum values, minimum values, parameter names, and error names.

- **Position meter**
 - Displays the position of the PV with respect to a desired scale.

- **SV display**
 - Displays SV and monitor values.

- **SV display status indicators**
 - **Display**
 - **T-G**
 - Turns ON when the timing signal turns ON. Otherwise OFF.
 - **T**
 - Turns ON when parameters for which teaching can be performed are displayed.
 - **HH, L, L, LL**
 - In RUN level, turn ON when the comparative set values HH, L, L, and LL are displayed.

- **MAX/MIN Key**
 - Used to switch the display between the PV, maximum value, and minimum value and to reset the maximum and minimum values.

- **LEVEL Key**
 - Used to switch level.

- **MODE Key**
 - Used to switch the parameters displayed.

- **SHIFT Key**
 - Used to change parameter settings. When changing a set value, this key is used to move along the digits.

- **UP Key**
 - When changing a set value, this key is used to change the actual value. When a measurement value is displayed, this key is used to execute or clear the forced-zero function or to execute teaching.
Single Sampling Data Output

A REQUEST signal from a Programmable Controller or other external device is required to read BCD data.

The data is set in approximately 30 ms from the rising edge of the REQUEST signal and the DATA VALID signal is output. When reading the data from a Programmable Controller, start reading the data when the DATA VALID signal turns ON. The DATA VALID signal will turn OFF 40 ms later, and the data will turn OFF 16 ms after that.

Continuous Data Output

Measurement data is output every 64 ms while the REQUEST signal remains ON.

Note: If HOLD is executed when switching between data 1 and data 2, either data 1 or data 2 is output depending on the timing of the hold signal. The data will not go LOW.

Programmable Controller Connection Example

Digital Indicator

Display Unit Connection Example

Digital Indicator

Refer to the following User's Manual for application precautions and other information required when using the Digital Indicator:

The manual can be downloaded from the following site in PDF format: OMRON Industrial Web http://www.fa.omron.co.jp
Connections

Terminal Arrangement

Note: Insulation is used between signal input, event input, output, and power supply terminals.

A Operating Power Supply

100 to 240 VAC
24 VAC / VDC

*Check the required power supply type.

B Sensor Power Supply/Output

Sensor power supply + PASS output

Sensor power supply + linear output

Sensor power supply

Relay Outputs

Transistor Outputs

DeviceNet Connector (Included)

BCD (NPN Open Collector): BCD
Applicable Connector (Sold separately)
HDR-E50MAG1
(HONDA TSUSHIN KOGYO CO., LTD.)
Special Cable (Sold separately)
K32-BCD (OMRON)
(HDR-E50MAG1 with 0.3-m cable)

The BCD COMMON is shared.
The pins indicated in the above diagram as blank (white) boxes have been removed.
Only one of the following can be used for each Digital Indicator: communications, BCD, or DeviceNet.

Contact output

Transistor Output
(NPN Open Collector)

Safety Standards Conformance

- Always use a EN/IEC-compliant power supply with reinforced insulation or double insulation for the DeviceNet power supply.
- The product must be used indoors for the above applicable standards to apply.
- The K3HB-X Vapor complies with UL standards when the applied input voltage is within the range 0 to 150 VAC.
E Analog Input

Weighing Indicator K3HB-V

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>COM</td>
<td>6</td>
</tr>
</tbody>
</table>

Temperature Indicator K3HB-H

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>COM</td>
<td>6</td>
</tr>
</tbody>
</table>

Linear Sensor Indicator K3HB-S

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>COM</td>
<td>6</td>
</tr>
</tbody>
</table>

D Event Input

Models with Terminal Blocks <K35-1>-<K35-3>

- TIMING: D2
- HOLD: D3
- RESET: D4
- ZERO: D5

Models with Connectors <K35-2>-<K35-4>

- Applicable Connector (Sold separately) XG4M-1030 (OMRON)
- Special Cable (Sold separately) K32-DICN (OMRON) (XG4M-1030 with 3 m cable)

BCD Output Cable

<table>
<thead>
<tr>
<th>Model</th>
<th>Pin arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>K32-BCD</td>
<td>N/C 1</td>
</tr>
</tbody>
</table>

Special Cable (for Event Inputs with 8-pin Connector)

<table>
<thead>
<tr>
<th>Model</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>K32-DICN</td>
<td>Pin No. 1</td>
</tr>
<tr>
<td></td>
<td>2 S-TMR</td>
</tr>
<tr>
<td></td>
<td>3 HOLD</td>
</tr>
<tr>
<td></td>
<td>4 RESET</td>
</tr>
<tr>
<td></td>
<td>5 N/C</td>
</tr>
<tr>
<td></td>
<td>6 COM</td>
</tr>
<tr>
<td></td>
<td>7 BANK4</td>
</tr>
<tr>
<td></td>
<td>8 BANK2</td>
</tr>
<tr>
<td></td>
<td>9 BANK1</td>
</tr>
<tr>
<td></td>
<td>10 COM</td>
</tr>
</tbody>
</table>

Note: The BCD Output Cable has a D-sub plug. Cover: 17JE-37H-1A (manufactured by DDK); Connector: equivalent to 17JE-23370-02 (D1) (manufactured by DDK)
Main Functions

Measurement

Input Calculation

- Two input circuits are provided. The input ranges for these circuits can be set independently. For example, one can be set to 4 to 20 mA and the other can be set to 1 to 5 V.
- In addition to calculations such as K (constant)–A (input for one circuit), it is possible to perform calculations based on the inputs for both circuits, such as A+B and A–B, making it possible to perform thickness measurement and level-difference measurement using displacement and length-measuring sensors.

Timing Hold

Normal

- Continuously performs measurement and always outputs based on comparative results.

Peak Hold/Bottom Hold

- Measures the maximum (or minimum) value in a specified period.

Scaling

Scaling converts input signals in any way required before displaying them. The values can be manipulated by shifting, inverting, or +/– reversing.

Peak-to-peak Hold

- Measures the difference between the maximum and minimum values in a specified period.

Average Processing

Average processing of input signals with extreme changes or noise smooths out the display and makes control stable.

Previous Average Value Comparison

Slight changes can be removed from input signals to detect only extreme changes.

Teaching

Settings for scaling can be made using the present measurement values instead of inputting values with the SHIFT and UP Keys. This is a convenient function for making the settings while monitoring the operating status.

Standby Sequence

Turns the comparative output OFF until the measurement value enters the PASS range.
Input Compensation/Display

Forced-zero
Forces the present value to 0. (Convenient for setting reference values or deducting tares for weight measurement.)

Tare Zero
Shifts the current value measured with a forced zero to 0 again. It is possible to measure two or more compounds separately and then, by releasing the tare zero and forced-zero, measure the combined total.

Zero-trimming
Compensates for mild fluctuations in input signals due to factors such as sensor temperature drift, based on OK (PASS) data at measurement. (This function can be used with sampling hold, peak hold, or bottom hold.)

Zero-limit
Changes the display value to 0 for input values less than the set value. It is enabled in normal mode only. (This function can be used, for example, to stop negative values being displayed or to eliminate flickering and minor inconsistencies near 0.)

The minimum and maximum values when the power supply is turned OFF can be saved if interruption memory is turned ON.

If interruption memory is ON, the maximum and minimum values after the last resetting will be displayed.

If interruption memory is OFF, the maximum and minimum values will be displayed after the power supply is turned ON (or after the reset input is performed).

Display Refresh Period
The display refresh period can be lengthened to reduce flickering and thereby make the display easier to read.

Display Color Selection
Values can be displayed in either red or green. With comparative output models, the display color can also be set to change according to the status of comparative outputs (e.g., green to red or red to green).

Example) Setting: grn-r

Display Value Selection
The current display value can be selected from the present value, the maximum value, and the minimum value.

Step Value
It is possible to specify (i.e., restrict) the values that the smallest displayed digit can change by. For example, if the setting is 2, the smallest digit will only take the values 0, 2, 4, 6, or 8 and if the setting is 5, it will only take the values 0 or 5. If the setting is 10, it will only take the value of 0.
Output

Comparative Output Pattern

The output pattern for comparative outputs can be selected. In addition to high/low comparison with set values, output based on level changes is also possible. (Use the type of output pattern appropriate for the application.)

Hysteresis

Prevents comparative output chattering when the measurement value fluctuates slightly near the set value.

Example: Comparative Output Pattern (Standard Output)

Startup Compensation Timer

Measurement can be stopped for a set time using external input.

PASS Output Change

Comparative results other than PASS and error signals can be output from the PASS output terminal.

Dimensions

![Dimensions Diagram]

Character Size for Main Display (mm)

PV display 7.6
SV display 3.5

Panel Cutout Dimensions

Mounting Recommended Panel Thickness 1 to 8 mm.
Mount the product horizontally.

*DeviceNet models: 97 mm
Terminal: M3, Terminal Cover: Accessory
■ Wiring Precautions

- For terminal blocks, use the crimp terminals suitable for M3 screws.
- Tighten the terminal screws to the recommended tightening torque of approx. 0.5 N·m.
- To prevent inductive noise, separate the wiring for signal lines from that for power lines.

Wiring

- Use the crimp terminals suitable for M3 screws shown below.

Unit Stickers

- Select the appropriate units from the unit sticker sheets provided and attach the sticker to the Indicator.

Note: When using for meters, such as weighing meters, use the units specified by regulations on weights and measures.

■ Mounting Method

1. Insert the K3HB into the mounting cutout in the panel.
2. Insert watertight packing around the Unit to make the mounting watertight.
3. Insert the adapter into the grooves on the left and right sides of the rear case and push until it reaches the panel and is fixed in place.

■ LCD Field of Vision

The K3HB is designed to have the best visibility at the angles shown in the following diagram.

■ Rubber Packing (Sold Separately)

K32-P1

If the rubber packing is lost or damaged, it can be ordered using the following model number: K32-P1.

(Depending on the operating environment, deterioration, contraction, or hardening of the rubber packing may occur and so, in order to ensure the level of waterproofing specified in NEMA4, periodic replacement is recommended.)

Note: Rubber packing is provided with the Controller.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

In the interest of product improvement, specifications are subject to change without notice.
Terms and Conditions of Sale

1. Offer, Acceptance. These terms and conditions (these "Terms") are deemed part of all Quotes, purchase orders, offers, negotiations, catalogs, manuals, brochures and other documents, whether electronic or in written form, relating to the sale of products (the "Products") (except as otherwise provided by Omron Electronics LLC and its subsidiary companies ("Omron"). Omron objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.

2. Prices; Payment Terms. All prices stated are current, subject to change without notice, and do not include any taxes, duties, or other governmental charges. Omron reserves the right to increase or decrease prices on any unshipped portions of outstanding orders. Payments for Products are due net 30 days unless otherwise stated in the invoice.

3. Delivery. Unless otherwise agreed in writing by Omron, if any invoice net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (i) the invoice is paid according to Omron's payment terms and (ii) Buyer has no past due amounts.

4. Interest. Omron, at its option, may charge Buyer 1-1/2% interest per month or the highest rate legally permitted, whichever is less, on any balance not paid within the stated terms.

5. Orders. Omron will accept no order less than $200 net billing.

6. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products.

7. Taxes. All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, delivery, exportation, reproduction or use of the Products shall be the sole responsibility of Buyer. Buyer agrees to pay all such taxes, duties and governmental charges and to deliver the Products free and clear of all such taxes, duties and governmental charges.

8. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security or prepayment for all Products. Buyer agrees to make payment in full on all Products in accordance with these Terms and any agreement made with Omron. Omron may (without liability and in addition to other remedies) cancel any unshipped portion of Products ordered from Omron or stop any Products in transit if Buyer pays all amounts, including amounts payable hereunder, whether or not then due, when due, at any time, or as requested by Omron. Buyer shall in any event remain liable for all unpaid accounts.

9. Cancellation. Orders are subject to rescheduling or cancellation without notice if Buyer indemnifies Omron against all related costs or expenses.

10. Force Majeure. Omron shall not be liable for any delay or failure in delivery resulting from any cause beyond Omron's control, including but not limited to: acts of God, wars, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the unavailability of any imported materials.

11. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:
 a. Shipment shall be by a carrier selected by Omron; Omron will not drop ship "break bulk" orders.
 b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall constitute delivery to Buyer.
 c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid.
 d. Delivery and shipping dates are estimates only; and
 e. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.

12. Change in Specifications. Buyer may not alter or change any Product, or any part thereof, without prior written consent by Omron. If Buyer alters or changes any Product, or any part thereof, without prior written consent by Omron, Buyer shall indemnify Omron, at Buyer's sole expense, for the cost of, and any and all claims made by any third party, related to such alteration or change.

13. Warranties.
 a. Omron's exclusive warranty is that the Products will be free from defects in material and workmanship for a period of one year from the date of shipment (unless otherwise stated in writing by Omron). Omron disclaims all other warranties, express or implied.
 b. Limitations. OMROM MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR ORAL OR WRITTEN INFORMATION OR MATERIALS PROVIDED BY OMROM OR ITS SUBSIDIARIES OR ANY OTHER ORAL OR WRITTEN INFORMATION OR MATERIALS PROVIDED BY OMROM OR ITS SUBSIDIARIES.

Certain Precautions on Specifications and Use

1. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying any such limitations. Any application or use of the Product by Buyer which is not suitable according to these Guidelines, or Omron itself is not sufficient for a complete determination of the suitability of the Product, Omron recommends that Buyer should consult its own product specifications, or other applicable application or user. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product, or system. Omron shall not be responsible in any case for the following: (i) a non-exhaustive list of applications for which particular attention must be given: (i) outdoor use, applications involving potential chemical contamination or electrical interference, or conditions or uses not described in this document. (ii) Use in consumer products or any use in significant quantities.

2. Programmable Products. Omron Companies shall not be responsible for the correct operation of memory or any type of programing of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right, (c) Buyer Remedy. Omron's sole obligation hereunder shall be Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) a non-complying Product, (ii) repair the non-complying Product, or (iii) repaid credit Buyer an amount equal to the purchase price of the non-complying Product; provided that no event shall Omron be responsible for any warranty, repair, or replacement expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for any delay or failure in delivery.

3. Performance Data. Actual performance is subject to the Omron's Warranty and Limitations of Liability. Buyer is purchasing the Products (without regard to conflict of law principles) in any way without the written permission of Omron. Notwithstanding any charges to Buyer for engineering or testing, all engineering and testing shall remain the exclusive property of Omron.

4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult your Omron representative for published information.

5. Errors and Omissions. Information published by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.